RAW DATA FORMAT

Valid for dag version 4.6

Records in the data stream:

SOR	Start of run record.
EVENT	Event record.
RCU	Each event record consists of RCU data, each RCU has a header.
DATA	Event data of ALTRO format for each RCU.
EOR	End Of Run record.
BOF	If local data logging. If the file size exceeds a maximum size then the file is closed and a new file is opened and the first record in the new file is a Beginning Of File record.
EOF	If local logging. If the file size exceeds a maximum size then the file is closed and a new file is opened. The last record in the closed file is End Of File record.
POR	Pause run record
COR	Continue run record

If the data logging is done locally, then the filename is: readout-<runnb>_<filenb>.dat, where runnb is the run number, and <filenb> is a file counter, incremented with one for each file opened within the current run, and starting from 0 for the first file.

START OF RUN FORMAT

Total length (exclusive)				
Header length (exclusive)				
Block identifier = BLOCK_SOR (=0x11111	1111)			
Data format version 0: reversed data format 1: 3 datawords in 32 bit word				
Run number				
Year	Month	Day		
Hour	Minute	Second		
PCA16 SHIFTREG SETTING 0: preamp enable 1-2: gain 3-5: shaper 6: shutdown 7: polarity	PC	CA16 DAQ SETTING		
RUN SETTINGS 0: zero suppression 1: pedestal subtraction 2-3: samples above threshold (0-3) (added v 4-13: zero suppression threshold (0-1023) (a				

14-16: number of postsamples (0-7) (added v4.6)

17-18: number of presamples (0-3) (added v4.6) 19-22: number of pretrigger samples (0-15) (added v4.6)

23-24: trigger source

(1-data driven & parallell port, 2-DBOX, 3-data driven with DBOX) (added v4.6)

EUDAQ run number

END OF RUN FORMAT

Total length (exclusive)					
Header length (exclusive)					
Block identifier = BLOCK_EOR (=0x33333333)					
Number of events					
Year Month Day					
Hour Minute Second					

PAUSE RUN FORMAT

Total length (exclusive)					
Header length (exclusive)					
Block identifier = BLOCK_POR (=0x11112222)					
Number of events					
Year Month Day					
Hour Minute Second					

CONTINUE RUN FORMAT

Total length (exclusive)					
Header length (exclusive)					
Block identifier = BLOCK_COR (=0x11113333)					
Number of events					
Year Month Day					
Hour Minute Second					

RAW EVENT FORMAT (32-bit words)

Terry Every Foldwith (52 of words)
Total event length (exclusive, added by software)
Header length (exclusive, added by software)
Block identifier = BLOCK_EVENT (=0x22222222) (added by software)
Software event number (incremented by software for each read event)
DBOXEVTN DBOX hardware trigger number (read from distributor box)
DBOXTIME DBOX time stamp (read from distributor box)
TLUEVTNM TLU event number (read from distributor box)

TSECONDS number of seconds as from function clock_gettime (added v4.6)

TNSECONDS number of ns within second as from function clock_gettime (added v4.6)

RCU block length (exclusive, added by software)

RCU identifier (added by software)

RCU HEADER – 8 words

ALTRO DATA

RCU TRAILER

RCU block length (exclusive, added by software)

RCU identifier (added by software)

RCU HEADER – 8 words

ALTRO HW DATA – N40 40 bit words = (N40*5)/4 32 bit words = N32

RCU TRAILER

RCU HEADER

BLOCK LENGTH [310] = FFFFFFFF						
FORMAT [3124] = 1		L1 Type [2114]		[13:12] = 0	EVT ID1 [110] = 0	
[3124] = 0	$[3124] = 0$ EVT ID2 $[230] = N \Rightarrow 0$??					
Block [3124] = 0 Participating sub-detectors [230] = 0					.0] = 0	
[3128] = 0 Status/Error [2712]					Bunch [110]	
Trigger classes low [310] = 0						
ROI [3128] [2718] = 0			Trigger classes high [170] = 0			
Region Of Interest (ROI) [310]						

ALTRO HW 40 bit word DATA example for one channel: 40 30 20 10

S05	S04	S03	S02 (sample)
S10	007 (length)	T06 (time stamp)	S06
005	T12	S12	S11

S91	S90	90 S89			S88 (sample)
2AA	007 (length)	T92 (time stamp)		S92	
2AAA (14 -bits)	# 10 bit words (1	0 bits)	A (4 bits)	12-	-bit hardware address

End of data structures depending on the number of 40 bit ALTRO data words. There is a description of the format later in this document.

N32 modulus 5 = 0

ALTRO WORD1 [310]			
ALTRO WORD2 [230]			ALTRO WORD1 [3932]
ALTRO WORD3 [150]		ALTRO WORD	02 [3924]
ALTRO WORD4 [70] ALTRO WORD3		3 [3916]	
ALTRO WORD4 [398]			

N32 modulus 5 = 2

ALTRO WORD1 [310]	
AAAAAA	ALTRO WORD1 [3932]

$N32 \mod ulus 5 = 3$

ALTRO WORD1 [310]		
ALTRO WORD2 [230]		ALTRO WORD1 [3932]
AAAA	ALTRO WORD	02 [3924]

N32 modulus 5 = 4

ALTRO WORD1 [310]			
ALTRO WORD2 [230]	ALTRO WORD1 [3932]		
ALTRO WORD3 [150]		ALTRO WORD	02 [3924]
AA	ALTRO WORD3 [3916]		

BEGINNING OF FILE FORMAT

Total length (exclusive)				
Header length (exclusive)				
Block identifier = BLOCK_BOF (=0x444444	1444)			
Data format version				
Run number				
Year Month Day				
Hour Minute Second				

File number	
Last event number	

END OF FILE FORMAT

Total length (exclusive)				
Header length (exclusive)				
Block identifier = BLOCK_EOF (=0x55555555)				
Last event number				
Year Month Day				
Hour Minute Second				

Last file number

RCU data format over the DDL

The RCU data formatter converts the blocs of 4x40 bit altro words into blocks of 5 32 bit words. One such block will from now on be called a DDL block. In general the number of 40 bit altro words of a RCU payload is not divisible by 4, therefore the last DDL data block might have either 2,3 or 4 32 bit words. It is necessary to find the position of the last altro word since the RCU payload is a back linked list of altro data. The position of the last 40 bit altro word can be found by taking the size of the payload modulus 5. more specific (sizeof(ddlbuffer)/4 – header size – Ntrailerwords)mod5. The mod 5 value of the DDL buffer determines unambiguous the position of the last altro word and thereby the total number of altro word. In addition the RCU trailer contains the count of 40 bit altro words that can e used as a consistency check. Given the payload size mod 5 value the position of the last altro word can be determined as given below.

• **Segmentation 0:** The number of 40 bit altro words is divisible by 4, the last DDL block is filled according to the table below. Position of last altro word when the a DDL block is exactly filled i.e the number of altro words is divisible by 4. This corresponds to the case when N40bitwords mod 4 = 0, or alternatively N32altroPayloadsize mod 5 = 0

N32 modulus 5 = 0			
ALTRO WORD1 [310]			
ALTRO WORD2 [230]			ALTRO WORD1 [3932]
ALTRO WORD3 [150]		ALTRO WORD	02 [3924]
ALTRO WORD4 [70]	ALTRO WORD	3 [3916]	
ALTRO WORD4 [398]			

• Segmentation 1; The number of 40 bit altro words modulus 4 equals one, the DDL block is filled according to the table below. Position of the last altroword of the last DDL block in the case where the last DDL block is filled with just one 40 bit word. In this case the last DDL block consists of two 32 bit words. The least significant 24 bits of the last 32 bit word of the DDL block indicated by the gray area is not used and is padded with 0xAAAAAA. This corresponds to the case when N40bitwords mod 4 = 1, or alternatively N32altroPayloadsize

 $N32 \mod ulus 5 = 2$

ALTRO WORD1 [310]	
AAAAAA	ALTRO WORD1 [3932]

• Segmentation 2; The number of 40 bit altro words modulus 4 equals two, the DDL block is filled according to the table below. Position of the last altro word of the last DDL block when the last DDL block is filled with two 40 bit words. In this case the the last DDL block consists of three 32 bit words. The least significant 16 bits of the last 32 bit word of the DDL block indicated by the gray area is not used and is padded with 0xAAAA. This corresponds to the case when N40bitwords mod 4 = 2, or alternatively N32altroPayloadsize mod 5 = 3

 $N32 \mod ulus 5 = 3$

1132 111044143 3 3		
ALTRO WORD1 [310]		
ALTRO WORD2 [230]		ALTRO WORD1 [3932]
AAAA	ALTRO WORD2 [3924]	

• Segmentation 3; The number of 40 bit altro words modulus 4 equals three, the DDL block is filled according to the table below. Position of the last altro word of the last DDL block when the last DDL block is filled with three 40 bit words. In this case the the last DDL block consists of four 32 bit words. The least significant 8 bits of the last 32 bit word of the DDL block indicated by the gray area is not used and is padded with 0xAA. This corresponds to the case when N40bitwords mod 4 = 3, or alternatively N32altroPayloadsize mod 5 = 4

N32 modulus 5 = 4			
ALTRO WORD1 [310]			
ALTRO WORD2 [230]			ALTRO WORD1 [3932]
ALTRO WORD3 [150]		ALTRO WORD	02 [3924]
AA	ALTRO WORD	3 [3916]	

NOTE: this format has not been used in any testbeam

Data format = 0: Reversed data format

For this version of the RCU firmware is the data reversed, i.e for each channel is ALTRO trailer with address and length the first word sent from the RCU.

ALTRO HW 40 bit word DATA example for one channel:

AAA/2AEE (14 -bits) # 10 bit words (2	bits) A (4 bits) 12-bit hardware address
---------------------------------------	--

2AA	007 (length)	T92 (time stamp)	S92 (sample)
S91	S90	S89	S88

005 (length)	T12 (time stamp)	S12	S11 (sample)
S10	007 (length)	T06 (time stamp)	S06
S05	S04	S03	S02

If ALTRO trailer is corrupted for "Block Length mismatch while comparing against number of data strobes" OR "addressed channel mismatch as compared to the address in ALTRO trailer then this word is corrected. Corrected trailer word will contain the counted number of (data strobes * 4) = # of 10 bit words received and the addressed channel from RCU. This toghether with ERR_REG2 and ERR_REG3 in the RCU trailer (see below) can be used to detect faulty events.

The data is stored in 32 bit words as

The data is stored in SE Sit Words as				
ALTRO WORD1 [310]				
ALTRO WORD2 [230] ALTRO WORD1 [3932				
ALTRO WORD3 [150] ALTRO WORD2 [3924]			2 [3924]	
WORD4 [7:0]	ALTRO WORD3 [39:16]			
etc etc				

This format was used in beam tests: 200903 and 200904. Due to a bug in RCU firmware was there events corrupted. This corruption was cured by new RCU firmware, resulting in a change of data format, version = 1

Code [31:26]] Name	Description [25:0]
0x00	PAYLOAD LENGTH	The payload length is expressed {No. of 40 bit words for DM} {No. of 32 bit words for RM}
0x01	ERR_REG1	Trailer[25:13] ≡ FECERRA[19:7]; Trailer[12:0] ≡ FECERRB[19:7]; FECERR[19]: transfer not released FECERR[18]: ALTRO error signal asserted while data being transferred; FECERR[17]:transfer not asserted; FECERR[16]: ALTRO error asserted before transfer; FECERR[15]: Write FSM error when started by RDO FSM; FECERR[14]: ackn not released by ALTRO; FECERR[13]: ALTRO error asserted while waiting for ackn to be released; FECERR[12]: ALTRO does not assert ackn; FECERR[11]: ALTRO error asserted while waiting for ackn; FECERR[10]: ALTRO asserts ackn before assertion of cstb; FECERR[09]: ALTRO error asserted while waiting for ackn in state "chkack"; FECERR[08]: ALTRO error asserted in state "assertbus" FECERR[07]: ALTRO error asserted in the execution of a broadcast command
0x02	ERR_REG2	ERR_REG2[8]: Block Length mismatch ERR_REG2[7]: Channel Address mismatch; ERR_REG2[6]: RDYRX error; ERR_REG2[5]: SCANEVLEN error; ERR_REG2[4:0]:EVLENRDO error;
0x03	ERR_REG3	ERR_REG3 [11:0] = Number of mismatches in the channels address detected by the data assembler during the readout ERR_REG3[24:12] = Number of mismatches in the channel data block length detected by the data assembler during the readout.
0x04	ERR_REG4	NOT USED "0000000000000000000000000"
0x05	FEC_RO_A	It defines the bit map of the "active" FECs of Branch A.
0x6	FEC_RO_B	It defines the bit map of the "active" FECs of Branch B.
0x7	RDO_CFG1	Copy of the RCU Register ALTROCFG1. For the definition of this parameter, see also ALTRO manual pags. 36,37. First Baseline Correction Mode \equiv RDO_CFG1[3:0] Polarity. When set, the ADC data is inverted (1's C) [4] Nr. Of pre-samples excluded from 2 nd baseline corr. \equiv RDO_CFG1 [6:5] Nr. Of post-samples excluded from 2 nd baseline corr. \equiv RDO_CFG1 [10:7] Enable second baseline correction \equiv RDO_CFG1 [11] Glitch filter configuration for zero suppression \equiv RDO_CFG1 [13:12] Nr. Of post-samples excluded from suppression \equiv RDO_CFG1[16:14] Nr. Of pre-samples excluded from suppression \equiv RDO_CFG1[18:17] Enable Zero Suppression \equiv RDO_CFG1 [19]
0x8	RDO_CFG2	Nr of ALTRO Buffers (copy of RCU register ALTROCFG2[4]) ≡ RDO_CFG2[24] Nr of pre-trigger samples (copy of RCU reg ALTROCFG2[[3:0]) ≡ RDO_CFG2[23:20] Nr. Samples / channel (copy of RCU reg ALTROIF[9:0]) ≡ RDO_CFG2[19:10] Sparse Readout ≡ RDO_CFG2[9] T _{sampling} / T _{LHC} ≡ RDO_CFG2[8:5] → 00 = 2 (20MHz), 01 = 4 (10MHz), 10 = 8 (5 MHz) Phase of L1 trigger wrt LHC bunch crossing ≡ RDO_CFG2 [4:0]. The phase is internally calculated in terms of bunch crossing cycles. For example if the Tsampling/TLHC is equal 01 (10MHz sampling rate), only the two least significant bits are meaningful and the phase can take values 0, 1, 2, 3.
0x9	RCU ID	[25:16] = 0x2AA; [15:7] = RCU Address Add[8] = 0 for A-side, 1 for C-side Add[7:3] = sector number (0:17) Add[2:0] = readout partition number (0:5) [6:0] = trailer length (nr. of 32-bit words)

Data format=1: Three datawords in a 32 bit word

31 30 29		20	19 10	9 0		
01	Е	Altr	o channel	header 1		
00	DW9		DW8	DW7		
00	DW6		DW5	DW4		
00	DW3		DW2	DW1		
00	DW0		0x00	0x00		
01	Е	Altr	o channel	header 2		
00	DW4		DW3	DW2		
00	DW1		DW2	0x00		
01	Е	Altro channel header				
00	DW3		DW2	DW1		

Order of 10 bit words in 32 bit data packet

Altro channel header [11:0]: [Channel Address from Altro]
Altro channel header [25:16]: [Block Length Number of 10 bit words from Altro]
Altro channel header [29]: E: Channel Error Bit, it is set to "1" if there has been a mismatch for channel address or block length received from ALTRO trailer. RCU will add a corrected Altro channel header followed by the data received from corresponding channel.

Altro channel header [31:30]: Word ID = "01" to mark ALTRAO Header: "00" for payload

Altro channel header [15:12] - [28:26]: Reserved = "0000"

DW: 10 bit data word.

0x00: Padding

Note that any AA padding in the raw ALTRO format is removed in this format.

Event data is followed by RCU trailer. This trailer comprises of 9 words of 32 bits. Start and end of RCU trailer is marked by two most significant bits. Each trailer word consists of parameter code and its value. RCU trailer format is described as followed.

31 30 29		26	25	0
Word ID	Parameter		Value	
10	Pay Load Length	0000	Number of 32 bit words	
10	Error Register 1	0001	Error Registers for Branch A and B	
10	Error Register 2	0010	Read out Errors	
10	Error Register 3	0011	Number of Altro Trailer Errors	
10	Act FEC A	0100	Active Front End Cards for Branch A	
10	Act FEC B	0101	Active Front End Cards for Branch B	
10	RDO CONFIG 1	0110	Readout configuration Register1 of Altro	
10	RDO CONFIG 2	0111	Readout configuration Register2 of Altro	
11	RCU ID	1000	RCU FW RCU address version	

[31:30]: Word ID: two most significant bits are used to identify the start and end of RCU trailer. Word ID= "10" shows that the word belong to RCU Trailer where as "11" shows that this is the last word of the RCU trailer.

[29:26]: Parameter: four bits field is used to mark different words in the RCU trailer [25:0]: Value: These 26 bits are used to record the status of the parameters listed in the table for the event.

This data format was used the first time in the test beam at DESY of 200907. Note that the format version written in the run header was due to a mistake not correct for all runs.