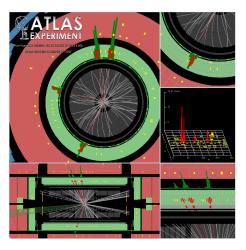
ATLAS-D Meeting 2013 - Würzburg ATLANTIS M. Böhler

September $24^{\rm th}$ 2013

Albert-Ludwigs-Universität Freiburg



Outline

JiveXML Package

Event Viewer

Outline

JiveXML Package

Event Viewer

What is ATLANTIS?

- Atlantis provides a graphical representation of an event
- aims to display complete ATLAS events in an intuitive way
- ▶ to make fast and correct conclusions about the underlying physics processes
- Within ATLAS it is used for:
 - Monitoring data taking in the control room
 - Analysis of individual events (debugging)
 - Creating images for publications
- Outside ATLAS it is used for:
 - Outreach
 - Master classes

Structure of ATLANTIS

- ► The Atlantis application consists of two programs/packages:
 - 1. The event file generator, JiveXML, running inside Athena
 - 2. The event viewer, Atlantis, which runs locally

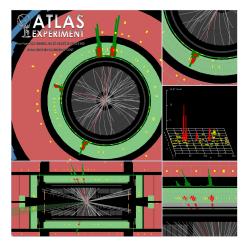
Structure of ATLANTIS

- The Atlantis application consists of two programs/packages:
 - 1. The event file generator, JiveXML, running inside Athena
 - 2. The event viewer, Atlantis, which runs locally

- 1. JiveXML packages can convert RAW/ESD/AOD events into single-event XML files. These XML files can be read by the viewer.
 - Athena jobs produce one XML file per event this can be done by:
 - JiveXML_jobOptions_PhysicsRAW.py
 - JiveXML_jobOptions_PhysicsAOD.py
 - ► ...

 \rightarrow According to the detail level of the input files (RAW,AOD), the event display is more or less detailed

- Instructions on JiveXML can be found on the TWiki: https://twiki.cern.ch/twiki/bin/view/AtlasComputing/Atlantis
- 2. The event viewer is presented in the second part of this session



Outline

Structure of Atlantis

JiveXML Package

Event Viewer

JiveXML Package - Hands-on (local default setup)

Setup ATHENA (this time the following Version):

mkdir eventPickingTest
cd eventPickingTest
asetup 17.2.3.5,here,slc5

Retrieve JiveXML_jobOptions files:

get_files -jo JiveXML_jobOptions_PhysicsAOD.py

Run ATHENA with the a JiveXML jobOption file:

athena JiveXML_jobOptions_PhysicsAOD.py

more detail in: CERN Tutorial TWiki

JiveXML Package - Hands-on (local default setup)

Setup ATHENA (this time the following Version):

mkdir eventPickingTest
cd eventPickingTest
asetup 17.2.3.5,here,slc5

Retrieve JiveXML_jobOptions files:

get_files -jo JiveXML_jobOptions_PhysicsAOD.py

Run ATHENA with the a JiveXML jobOption file:

athena JiveXML_jobOptions_PhysicsAOD.py

Then copy the newly produced xml files to your desy web directory:

mkdir -p ~/www/EventPicking/AOD
fs setacl -dir ~/www -acl desy-hosts read (<-- this has to be done only once)
cp JiveXML_*.xml ~/www/EventPicking/AOD</pre>

Later on you can examine your events via the url:

http://www.desy.de/~<user name>/EventPicking/AOD/JiveXML_*.xml

more detail in: CERN Tutorial TWiki

XML

Event Picking - with pAthena

create text file (here *rrr.txt*) with run *space* event numbers; e.g.

more detail in: CERN Tutorial TWiki

```
215414 33764295
215414 33763743
215414 33765718
```

for this example, we will use pAthena: Setup the pAthena environment (in a new shell)

cd eventPickingTest asetup 17.2.3.5,here,slc5 localSetupPandaClient

Retrieve the job option file:

```
athena JiveXML_jobOptions_PhysicsRAW.py
```

Submit command to find the events from the text file rrr.txt

```
pathena JiveXML_jobOptions_PhysicsRAW.py --eventPickEvtList rrr.txt \
--eventPickDataType RAW --outDS user.<nickname>.AtlantisRAW_test \
--extOutFile "JiveXML*.xml" --eventPickStreamName physics_Muons \
--supStream=GLOBAL,ESD
```


Event Picking - with pAthena

create text file (here *rrr.txt*) with run *space* event numbers; e.g:

more detail in: CERN Tutorial TWiki

```
215414 33764295
215414 33763743
215414 33765718
```

for this example, we will use pAthena: Setup the pAthena environment (in a new shell)

cd eventPickingTest asetup 17.2.3.5,here,slc5 localSetupPandaClient

Retrieve the job option file:

```
athena JiveXML_jobOptions_PhysicsRAW.py
```

Submit command to find the events from the text file rrr.txt

```
pathena JiveXML_jobOptions_PhysicsRAW.py --eventPickEvtList rrr.txt \
    --eventPickDataType RAW --outDS user.<nickname>.AtlantisRAW_test \
    --extOutFile "JiveXML*.xml" --eventPickStreamName physics_Muons \
    --supStream=GLOBAL,ESD
```

- What if my events are only on tape?
 - ..you will receive a message and email, informing you that the files will attempt to be staged to disk and you can then retry sometime later
 - if you see this message, submit the job as shown below, with the additional -eventPickStagedDS argument

```
pathena JiveXML_jobOptions_PhysicsRAW.py --eventPickEvtList rrr.txt \
    --eventPickDataType RAW --outDS user.sinckname>.klantisRAW_test \
    --extDutFile "JiveXML*.xml" --eventPickStreamName physics_Muons \
    --eventPickStagedDS user.snickname>.tutorial.eventPick --supStream=GLOBAL,ESD
```


Event Picking - with Ganga

Running the same job within Ganga, you need to setup Ganga instead (please use another shell):

more detail in: CERN Tutorial TWiki

cd eventPickingTest asetup 17.2.3.5,here,slc5 localSetupGanga

And then submit the jobs (either via command line):

```
ganga athena --pickevent --pick_event_list rrr.txt \
    --pick_data_type RAW --pick_stream_name physics_Muons \
    --pick_dataset_pattern '*physics_Muons*' --extOutFile "JiveXML_*.xml" \
    JiveXML_jobOptions_PhysicsRAW.py
```


Event Picking - with Ganga

Running the same job within Ganga, you need to setup Ganga instead (please use another shell):

cd eventPickingTest asetup 17.2.3.5,here,slc5 localSetupGanga

And then submit the jobs (either via command line):

```
ganga athena --pickevent --pick_event_list rrr.txt \
    --pick_data_type RAW --pick_stream_name physics_Muons \
    --pick_dataset_pattern '*physics_Muons*' --extOutFile "JiveXML_*.xml" \
    JiveXML_jobOptions_PhysicsRAW.py
```

or through the IPython interface:

```
j = Job()
j.application=Athena()
j.application.option_file=['JiveXML_jobOptions_PhysicsRAW.py']
j.application.propare()
j.inputdata.pick_data.type = "AAW'
j.inputdata.pick_data.type = "AAW'
j.inputdata.pick_dataset_pattern = "*physics_Muons"
j.inputdata.pick_dataset_pattern = "*physics_Muons"
j.inputdata.pick_dataset()
j.splitter=DQ2JobSplitter()
j.splitter=DQ2JobSplitter()
j.backend=Panda()
j.backend=Panda()
j.backend.extOutFile = ['JiveXML_*.xml']
j.submit()
```


more detail in:

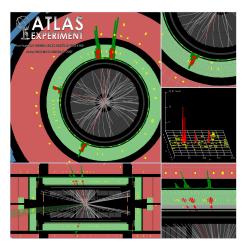
CERN Tutorial TWiki

JiveXML Package - Hands-on run on your own data

- Create file containing the run number and the event number of your final events:
 - this you can do by scanning your output ntuple:

```
root -1 filtered.d3pd.root
root [1] MySkimmedD3PD->Scan("RunNumber:EventNumber")
       ************************
    Row * BunNumber * EventNumb *
0 *
              189090 *
                        416755 *
*
       1 *
              189090 *
                        480342 *
*
       2 *
              189090 *
                        502881 *
*
       3 *
              189090 *
                        502806 *
*
       4 *
              189090 *
                        492178 *
*
       5 *
             189090 *
                        523277 *
```

- Write the run number and the event number into a events.txt file
- Submit either via pAthena or Ganga the EventPicking script (as described on previous pages) to the Grid
- RAW data is mainly stored on tape, this might take some days
 - so we have to skip that it should give you an idea, how to produce your own event displays in a non tutorial environment



Outline

JiveXML Package

Event Viewer

Getting ATLANTIS up and running

- Atlantis can be started in several ways
 - Directly from the Athena environment by typing atlantis (not recommended unless you have Athena installed locally)
 - From http://cern.ch/atlantis/download
 - Starting it directly using Java WebStart
 - Downloading it as a tgz archive
- We are using the tutorial version today
 - loads automatically the right events
- 1. Download: AtlantisJava-09-16-04-05-tutorial.tgz
- 2. Extract ATLANTIS

tar xfv AtlantisJava-09-16-04-05-tutorial.tgz

3. Start the java app with:

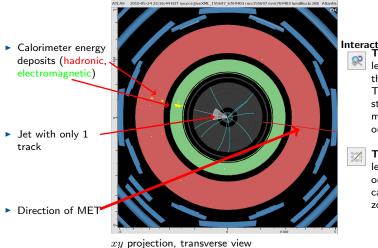
java -Dapple.awt.graphics.UseQuartz=false -jar atlantis.jar

You should see the start screen.....

M. Böhler (Uni Freiburg) | ATLANTIS | September 24th 2013

http://www.hep.ucl.ac.uk/atlas/atlantis/

Webstart



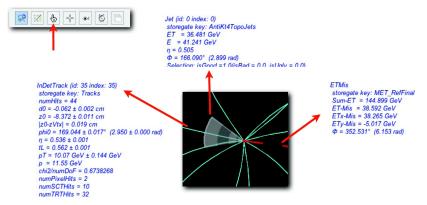
User interface basics

Canvas	► GL		
 Particular Projections in φη, yx, ρz information window 	Projection Data Segment Secondaria Practicustor Practicustor Practicustor SinchargodTata SinchargodTata SinchargodTata SinchargodTata SinchargodTata	Not and the second seco	23 U 3 56 C 6 89 D 9

Looking at your first event

Interaction Tools: The zoom tool:

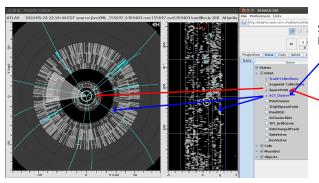
> lets you zoom in on the interaction point. The point you click stays under the mouse, drag it in or out to zoom.


The rubberband tool:

lets you select an area on the canvas, you can then select to zoom in on this area.

Looking at your first event

Now select the pick tool and look at the details of some of the objects we see


- We have a 36 GeV jet balancing the missing ET, containing one track of only 10 GeV.
 - What can this be?

Displaying/hiding datatypes

- you can undo all changes by Reset
- go to the next event in this folder by Next

😣 🖻 🗊 Atlantis GUI					
File Preferences Lists	Reset	Demo	Previous	Next	Help
http://atlantis.web.cern.ch/atlantis/AtlantisJava-09-16-04	4-05-tuto	rial-v	• 💠 💿	+ ot	03

Settings and cuts differenciate between **Global** and **Local**

- Global settings (blue in setting window) apply to all windows
- Local settings (black in setting window) only to the selected window
- Right click on any setting to switch local/global

Applying cuts

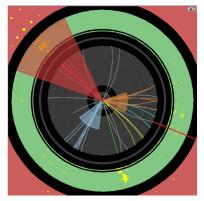
- \blacktriangleright all cuts on this slide are applied ${\rm globally} \rightarrow {\rm to}$ all windows
- cuts can be applied on detector subsystems as well as on physics objects

Projection	Data Cuts InDet Calo	Muon	Det Objects Geometry	
InDet	Name		Value	
Calo			1.0 GeV	
MuonDet	Contra .			
Objects	✓ d0	<	2.5 mm	
AILAS	≥ 20	<	20.0 cm	
	🕑 (d0 Loose)	<	2.0 cm	
	z0-zVtx	<	2.5 mm	
	Layer	>	0	
	Number Pixel Hits		2	
	Number SCT Hits	>-	7	
	Number TRT Hits	>=	15	
	Sim. Particle PDG-ID	<	40	
	Sim. Particle Barcode	-	0	
	Sim. Particle Type		charged hadron	
	SimVertex	-	0	
	SCT/Pixel		All	-
	TRT DriftCircle		All	-

 Try raising the track pT cut from 1 to 5 GeV

rojection	Data Cuts InDet Calo Mi	Jon	Det Objects Geometry		
InDet	Name		Value		
Calo	V jet ET	>	15.0 GeV		
Objects	✓ Jet EMfraction	<	0.95		1
ATLAS	Jet VxFraction	>	0.75		
	BTagger		None	-	
	BTag weight	>	0.0		
	F ETMIS	>	15.0 GeV		
	Electron Pt	>	5.0 GeV		
	Electron isEM	-	0		1
	Electron isEMString		Tight	-	
	Electron eOverp	>	0.0	_	
	Electron hasTrack				1
	V Muon Pt	>	5.0 GeV		
	Muon chi2	<	0.0		1-1
	Photon Pt	>	5.0 GeV		1
	Photon isEM	-	0		
	Photon isEMString		Loose	-	
	🕑 (Taujet Pt)	>	5.0 GeV		1
	💌 [TauJet Charge]	-	1		
	☑ [Taujet NumTracks]	<=	3		1
	✓ TauJet isTauString		TauCutMedium	-	
	💌 Bjet Pt	>	5.0 GeV		
	☑ Bjet IhSig	>	0.9		1
	Bjet weight	>	0.0		
	Taujet isolFrac	>	0.3		
	Taujet logLhRatio	>	-2.0		F

Associations


Atlantis also knows about associations between objects, for example the tracks that are associated to a jet

	Give each jet a	a different color	(color by index)
--	-----------------	-------------------	------------------

Projection	Data Cuts InDet Calo MuonDe	et Objects Geometry
Jet	Name	Value
ETMis	let Collections	AntiKt4Topolets
BJet	Jet Collections	Antikt410pojets
Electron	Color Function	Index 💌

...then color the tracks by associated object

Projection Dat	ta Cuts InDef	Calo	MuonDet	Objects	Geometry
Track	Track Zoom Next Track				
Segment		Zoom Next Track			
SpacePoint		Name			Value
PixelCluster	Track Collection	Track Collections		Tracks	
SCT_Cluster					
TrigSiSpacePoint Color Function			Objects		
PixelRDO	Constant Cold	Constant Color		25	5

Associations work the same for hits and tracks, try coloring the hits by track

Mouse modifiers

- Mouse modifiers are keys you hold down to change the default behavior of an interaction tool
- For example: hold down the M key when using the zoom tool to change zooming into moving, or R to rotate the detector
- The modifier keys for the currently active interaction can be shown if you select modifier keys from the help menu

6	😣 🖱 Help - Modifier Keys				
	Key	Action			
0	I + Right	Interaction Wanager pops up			
0	0 + Right	Output of pointer position			
0	W + Right	Window Wenu pops up			
0	Right	Interaction Wenu pops up			
0	с	Modify Central Point			
0	F	Fast Zoom			
0	н	Horizonatal Zoom			
0	М	Nove (pan)			
0	R	Rotate			
0	V	Vertical Zoom			
0	Z	Zoon			
۲		Zoon			

Hands-on Session

- Now it is time for you to explore the rest of the events on your own
- In the events we have given you, you can find:
 - Single W and Z bosons
 - WZ and W events
 - Top quark pairs
 - Leptonic Higgs decays
- > You can also look at the events you have produced yourself on the grid
- We will be walking around to help, do not hesitate to ask questions
- Also feel free to ask us about anything specific to your analysis or subdetector, there are many more features that we can show you
- Bonus: Can you reproduce the design from page 2?

More Informations

- If you want to learn more about Atlantis:
 - Sign up for the hypernews hn-atlas-AtlantisDisplay@cern.ch
 - Sign up for one of our (yearly) advanced tutorials to discover many more features that can help you to better understand your events
 - Check out http://atlas-live.cern.ch and go to Collaboration site to download XML files of the most recent collisions

