<> == ToDo == === Implementation === === Implementation in SFrame === * is it actually correct to take into weighted MC events instead of data points? * implement top baseline selection and test. * Oliver: dump events and look at topology. He doesn't think those events are actually electron fakes but just electrons in jets. Maybe one could remove those in an easier way. === Implementation in Root === * '''Draw two and ratio''' MET QCD RefFinal 2 jets scaled to unity * Draw random events from distributions (tree variables now available) and fit 100 times * get effiencies for all channels * Do fit for all jet multiplicity bins * do Appendix C fix (Anti-electron contamination) * get other electro-weak stuff in * change jet pT threshold? (is implemented, but probably needs some change). Could e.g. require 3 high pt jets plus another low pt jet. === Admiration === * check if track particle Z veto is good (used to be so in CDF) * check if m_W cut biases MET * try if MET is correlated with (anti-)electron eta: plot MET for central (before crack) and fwd (beyond crack) electrons and MET vs. electron eta == Completed ToDo/Discussion == * Do TFractionFitter tests: Create Landau with small Gaussian distribution on top and try to fit, repeat for weighted events * didn't see problems, see attached test script ([[attachment:TestFractionFitter.C]] and [[attachment:TestFractionFitter.h]]) == Event Selection == * require electron trigger (EF_e20_loose). Was before EF_e15, but this is not filled (not on the menu any more). * reject event if combined muon with pt>20GeV and etcone20<6000GeV * exactly one good electron (pt>20, no crack, eta<2.5, medium) * remove jets that are within dR < 0.4 of electron * skip event, if another jet is within dR<0.52 * Zee rejection: skip event, if: * jet (pt>15,eta<2.5) with nTracks < 3 or * electron object (pt>15,eta<2.5) with ethad1/(pt-ethad1)<0.12, etcone20<0.15*pt and opposite charge found or * trackparticle (pt>10,eta<2.5) with NSCT+NPixelHits>=7, |d0|<2mm, |z0*sin(theta)|<10mm and opposite charge found. == Missing ET vs. Electron Isolation Method == == Antielectron Method == Currently an antielectron is an electron object that passes the ElectronLoose cuts but not the ElectronMedium cuts. * m_W transverse mass > 20 === Cross-Section Calculation === Formulae: {{{#!latex \begin{equation} %\begin{align} N_n (\mathrm{data}) = K_{W_n} \cdot \left[ N_n(W \rightarrow e^+ e^-) + A_Z N_n (Z \rightarrow e^+ e^-) + A_\tau N_n (W \rightarrow \tau \nu) \right] + K_{Q_n} \cdot \left[ N_n (\mathrm{QCD}) + A_\mathrm{top} N_n (\mathrm{top}) \right] %\end{align} \end{equation} }}} X_n(Y): Contribution of process Y to region X: {{{#!latex \begin{equation} X_n (t\bar{t}) = X_n^\mathrm{sel} (t\bar{t}\mathrm{\:MC}) \cdot \frac{L_\mathrm{data}}{L_{ t\bar{t} \mathrm{\:MC} } } \end{equation} \begin{equation} X_n(Z \rightarrow e^+ e^-) = \frac{ X_n^\mathrm{sel} (Z \rightarrow e^+ e^- \mathrm{\:MC}) }{ D_n^\mathrm{sel} (W \rightarrow e \nu \mathrm{\:MC}) } \cdot \frac{ G (W \rightarrow e \nu \mathrm{\:MC}) } { G (Z \rightarrow e^+ e^- \mathrm{\:MC}) } \cdot \frac{ 1 }{ R_{WZ} } \cdot N_n (W \rightarrow e \nu) \end{equation} \begin{equation} X_n(W \rightarrow \tau \nu) = \frac{ X_n^\mathrm{sel} (W \rightarrow \tau \nu \mathrm{\:MC}) }{ D_n^\mathrm{sel} (W \rightarrow e \nu \mathrm{\:MC}) } \cdot \frac{ G (W \rightarrow e \nu \mathrm{\:MC}) } { G (Z \rightarrow \tau \nu \mathrm{\:MC}) } \cdot \frac{ 1 }{ R_{WZ} } \cdot N_n (W \rightarrow e \nu) \end{equation} \begin{equation} X_n(W \rightarrow e \nu) = \frac{ X_n^\mathrm{sel} (W \rightarrow e \nu \mathrm{\:MC}) }{ D_n^\mathrm{sel} (W \rightarrow e \nu \mathrm{\:MC}) } \cdot N_n (W \rightarrow e \nu) \end{equation} }}} Factorising all electroweak contributions one can write: {{{#!latex \begin{equation} X_n (\mathrm{ewk}) = x_n \cdot N_n (W \rightarrow e \nu) \end{equation} }}} with $x_n$ defined from equations above.