ATLAS

ToDo

Implementation

Implementation in SFrame

Implementation in Root

Admiration

Completed ToDo/Discussion

Event Selection

Missing ET vs. Electron Isolation Method

Antielectron Method

Currently an antielectron is an electron object that passes the ElectronLoose cuts but not the ElectronMedium cuts.

Cross-Section Calculation

Formulae:

\begin{equation}
%\begin{align}
N_n (\mathrm{data}) =  K_{W_n} \cdot \left[ N_n(W \rightarrow e^+ e^-) + A_Z N_n (Z \rightarrow  e^+ e^-) + A_\tau N_n (W \rightarrow  \tau \nu) \right] + K_{Q_n} \cdot \left[ N_n (\mathrm{QCD}) + A_\mathrm{top} N_n (\mathrm{top}) \right]
%\end{align}
\end{equation}

X_n(Y): Contribution of process Y to region X:

\begin{equation}
X_n (t\bar{t}) =  X_n^\mathrm{sel} (t\bar{t}\mathrm{\:MC}) \cdot \frac{L_\mathrm{data}}{L_{ t\bar{t} \mathrm{\:MC} } }
\end{equation}
\begin{equation}
X_n(Z \rightarrow  e^+ e^-) = \frac{ X_n^\mathrm{sel} (Z \rightarrow  e^+ e^- \mathrm{\:MC}) }{ D_n^\mathrm{sel} (W \rightarrow e \nu \mathrm{\:MC}) } \cdot \frac{ G (W \rightarrow e \nu \mathrm{\:MC}) } { G (Z \rightarrow  e^+ e^- \mathrm{\:MC}) } \cdot \frac{ 1 }{ R_{WZ} } \cdot N_n (W \rightarrow e \nu)
\end{equation}
\begin{equation}
X_n(W \rightarrow  \tau \nu) = \frac{ X_n^\mathrm{sel} (W \rightarrow  \tau \nu \mathrm{\:MC}) }{ D_n^\mathrm{sel} (W \rightarrow e \nu \mathrm{\:MC}) } \cdot \frac{ G (W \rightarrow e \nu \mathrm{\:MC}) } { G (Z \rightarrow \tau \nu \mathrm{\:MC}) } \cdot \frac{ 1 }{ R_{WZ} } \cdot N_n (W \rightarrow e \nu)
\end{equation}
\begin{equation}
X_n(W \rightarrow  e \nu) = \frac{ X_n^\mathrm{sel} (W \rightarrow  e \nu \mathrm{\:MC}) }{ D_n^\mathrm{sel} (W \rightarrow e \nu \mathrm{\:MC}) } \cdot N_n (W \rightarrow e \nu)
\end{equation}

Factorising all electroweak contributions one can write:

\begin{equation}
X_n (\mathrm{ewk}) =  x_n \cdot N_n (W \rightarrow e \nu)
\end{equation}

with $x_n$ defined from equations above.

ATLAS: ClemensLange/QCDAnalysis (last edited 2010-02-23 22:35:24 by ClemensLange)